public final class Integrand
extends java.lang.Object
修飾子とタイプ | メソッドと説明 |
---|---|
static double |
bySimpsonRule(double f0,
double f1,
double f2,
double h)
∫f(x)dx (a ≤ x ≤ b), h = b-a, answer =
h/6*(f(a)+4*f((a+b)/2)+f(b)) by Simpson's rule.
|
static double |
jeffreysMethod1(double h,
double... y)
1: ∫02h(ax-1/2+bx1/2)dx
|
static double |
jeffreysMethod2(double h,
double... y)
2:∫03h(ax-1/2+bx1/2)dx
|
static double |
jeffreysMethod3(double h,
double... y)
3: ∫03h (a x-1/2 + b x1/2
+ c x3/2) dx
|
static double |
jeffreysMethod4(double h,
double... y)
4: ∫02h (a x1/2 + b x3/2)
dx
|
static double |
jeffreysMethod5(double h,
double... y)
5: ∫03h (a x1/2 + b x3/2)
dx
|
static double |
jeffreysMethod6(double h,
double... y)
6: ∫03h(a x1/2 + b x3/2 +
c x5/2) dx
|
public static double bySimpsonRule(double f0, double f1, double f2, double h)
public static double jeffreysMethod1(double h, double... y)
h
- where integral interval is 0 → 2hy
- f(h), f(2h) for the approximationpublic static double jeffreysMethod2(double h, double... y)
h
- where integral interval is 0 → 3hy
- f(h), f(2h), f(3h) for the approximationpublic static double jeffreysMethod3(double h, double... y)
h
- where integral interval is 0 → 3hy
- f(h), f(2h), f(3h) for the approximationpublic static double jeffreysMethod4(double h, double... y)
h
- where integral interval is 0 → 2hy
- f(h), f(2h) for the approximationpublic static double jeffreysMethod5(double h, double... y)
h
- where integral interval is 0 → 3hy
- f(h), f(2h), f(3h) for the approximationpublic static double jeffreysMethod6(double h, double... y)
h
- where integral interval is 0 → 3hy
- f(h), f(2h), f(3h) for the approximation